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Abstract

Background—Prenatal polybrominated diphenyl ether (PBDE) exposure has been associated 

with decrements in IQ and increased attention deficit/hyperactivity disorder related behaviors in 

children; however, data are limited for the role of postnatal exposures.

Objectives—We investigated the association between a series of childhood PBDE concentrations 

and Full-Scale Intelligence Quotient (FSIQ) and externalizing problems at 8 years.

Methods—We used data from 208 children in the Health Outcomes and Measures of the 

Environment (HOME) Study, a prospective pregnancy and birth cohort. Child serum PBDEs were 

measured at 1, 2, 3, 5, and 8 years; missing serum PBDE concentrations were estimated via 

multiple imputation. The Wechsler Intelligence Scales for Children-IV and the Behavior 

Assessment System for Children-2 was used to assess intelligence and externalizing behavior, 

respectively, in children at 8 years. We used multiple informant models to estimate associations 
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between repeated lipid-adjusted PBDEs and child neurobehavior and to test for windows of 

susceptibility.

Results—Postnatal exposure to PBDE congeners (-28, -47, -99, -100, and -153) at multiple ages 

was inversely associated with FSIQ at 8 years. For instance, a 10-fold increase in BDE-153 

concentrations at 2, 3, 5, and 8 years were all related to lower FSIQ at age 8 (β for 3 years: −7.7-

points, 95% CI −12.5, −2.9; β for 8 years: −5.6-points, 95% CI −10.8, −0.4). Multiple PBDE 

congeners at 8 years were associated with increased hyperactivity and aggressive behaviors at 8 

years.

Conclusions—Postnatal PBDE exposure was associated with decrements in FSIQ and increases 

in hyperactivity and aggressive behaviors.

Keywords

Polybrominated diphenyl ether (PBDE); neurobehavior; postnatal; intelligence; externalizing 
behavior

1. Introduction

Commercial mixtures of polybrominated diphenyl ethers (PBDEs) were used extensively for 

decades as additive flame retardants in a multitude of consumer products, including 

polyurethane foams, carpet padding, furniture, and electronic devices to reduce fire 

incidence and the related economic costs. While PBDEs have been removed from the U.S. 

market, they remain ubiquitous environmental contaminants with detectable levels in air, 

dust, soil, wildlife, as well as in human biospecimens (Costa and Giordano, 2007). Infants 

and children have several fold higher serum PBDE concentrations on a lipid basis than 

adults due to placental and lactational transfers and child-specific behaviors, such as 

frequent hand-to-mouth actions and crawling on the floor (Schecter et al., 2005; Toms et al., 

2008; Toms et al., 2009).

Evidence from several epidemiological studies indicates that PBDEs are neurotoxic when 

exposure occurs during fetal development, with reports of decrements in Full Scale IQ 

(FSIQ), impaired executive function, lower reading and language abilities, and increased 

attention deficit/hyperactivity disorder (ADHD) related behaviors (Chen et al., 2014; Cowell 

et al., 2015; Ding et al., 2015; Eskenazi et al., 2013; Herbstman et al., 2010; Shy et al., 2011; 

Vuong et al., 2016; Zhang et al., 2016). Postulated mechanisms by which PBDEs may exert 

neurotoxic effects include indirectly affecting brain development through thyroid hormone 

disruption or directly acting on brain cells by causing oxidative stress, interfering with signal 

transduction, altering cholinergic system responses, inducing neuronal apoptosis, and 

altering neurotransmitter release and function (Costa et al., 2014; Costa and Giordano, 2011; 

Dingemans et al., 2011).

PBDEs may continue to adversely affect neurobehavioral domains even after birth as rapid 

brain growth continues until two years of age. In addition, neural development, including 

synaptogenesis and myelination, extends through puberty (Rice and Barone, 2000). 

However, it is uncertain whether childhood PBDE exposures are adversely associated with 

neurobehavior, as few studies have examined early childhood as a vulnerable window of 
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susceptibility to PBDE neurotoxicity. Only four papers have investigated childhood serum 

PBDEs and neurobehavior; half observed adverse associations with FSIQ and ADHD-

related behaviors (Eskenazi et al., 2013; Gascon et al., 2011; Przybyla et al., 2016; Sagiv et 

al., 2015). Given that PBDE concentrations are higher in children than the developing fetus 

and the lack of studies that identified windows of susceptibility for PBDE neurotoxicity in 

childhood, we examined the association between childhood PBDEs measured at 1–8 years 

and FSIQ and externalizing behaviors at 8 years.

2. Methods

2.1 Study Participants and Design

The study consisted of participants enrolled in the Health Outcomes and Measures of the 

Environment (HOME) Study, an ongoing prospective pregnancy and birth cohort established 

in the Greater Cincinnati area (Ohio, USA). Detailed information on enrollment, inclusion 

criteria, and neurobehavioral assessments are described by Braun et al. (2016). The HOME 

Study included 390 singleton births at delivery and completed multiple postnatal follow-up 

visits up to age 8 years. The present study included 208 singleton children with at least one 

serum PBDE measure between 1–8 years and a neurobehavior assessment at 8 years. The 

study protocol was approved by the Institutional Review Boards at the Cincinnati Children’s 

Hospital Medical Center and the Centers for Disease Control and Prevention (CDC).

2.2 Childhood serum PBDEs

Concentrations of BDEs-17, -28, -47, -66, -85, -99, -100, -153, -154, -183, and -209 were 

measured in children’s serum samples collected at 1, 2, 3, 5, and 8 years, using gas 

chromatography/isotope dilution high-resolution mass spectrometry (Jones et al., 2012; 

Sjodin et al., 2004). Samples were processed in batches of twenty-four unknown, three 

quality control, and three method blank samples. PBDE concentrations <LOD (limit of 

detection) were substituted with LOD/√2 (Hornung and Reed, 1990). LOD was defined as 

three times the SD of the method blanks or the lowest calibration standard point 0.5 pg/µL 

corresponding to 5 pg per sample (in the absence of detectable blanks). We report PBDE 

concentrations as ng/g serum lipid. Serum lipid concentrations were calculated from 

concentrations of triglycerides and total cholesterol (Phillips et al., 1989). We analyzed 

individual PBDE congeners with detection frequencies ≥80%, which included BDE-28, -47, 

-99, -100, -153, and their sum (ΣPBDEs). Of the 208 children with neurobehavioral 

assessments at 8 years, PBDEs were available for 86 (41%), 69 (33%), 69 (33%), 141 

(68%), and 192 (92%) at ages 1, 2, 3, 5, and 8 years, respectively.

Due to limited serum availability at 1–3 years required to meet the volume needed by the 

assays, PBDEs were unable to be measured in the majority of the children during early 

childhood. Thus, we estimated PBDE concentrations for children who had at least one 

PBDE measurement from 1–8 years, but were missing concentrations at other time points 

via multiple imputation using the Markov Chain Monte Carlo (MCMC) method, in which 

100 imputations were produced (Bodner, 2008). This provides a set of 100 plausible PBDE 

estimates that also incorporates the uncertainty or error associated with the missing data 

(Rubin, 1987). Auxiliary variables in the imputation models were selected based on their 
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correlation with childhood PBDEs (p<0.05) and included maternal blood lead concentrations 

during pregnancy, household income, marital status, whether the child was breastfed, and 

Home Observation for Measurement of the Environment (HOME) Score. Maternal serum 

polychlorinated biphenyls (ΣPCBs) of 15 congeners during pregnancy were added to the 

imputation model due to its correlation with PBDEs at 2 years (p=0.02). Both log10-

transformed prenatal and postnatal PBDEs were included, because of their long half-life and 

consideration of placental and lactational transfers (Toms et al., 2009). Lastly, FSIQ at 8 

years was included as excluding the dependent variable would cause estimated associations 

to be biased toward the null (Enders, 2010). Convergence of imputation models were 

assessed using trace and auto-correlation plots.

2.3 Neurobehavior Assessments

Trained HOME Study staff, certified by a developmental psychologist, administered the 

Wechsler Intelligence Scale for Children-IV (WISC-IV) to children at age 8 years to 

measure FSIQ (Wechsler, 2003; Wechsler, 2004). To assess adaptive and behavioral 

problems in children, parents were requested to complete the Behavioral Assessment System 

for Children-2 (BASC-2) (Reynolds and Kamphaus, 2004). We focused on FSIQ and 

Externalizing Problems and its subscales (hyperactivity, aggression, conduct disorder), 

because prenatal PBDEs were significantly associated with FSIQ deficits and increased 

externalizing behavior in several epidemiologic studies (Chen et al., 2014; Cowell et al., 

2015; Eskenazi et al., 2013; Roze et al., 2009; Zhang et al., 2016). The BASC-2 has a 

population mean of 50±10, with higher scores indicating increased problem behaviors. 

Neither HOME Study staff nor parents had knowledge of prenatal or childhood PBDE 

concentrations at the neurobehavioral assessment.

2.4 Statistical analyses

We investigated associations between log10-transformed child serum PBDEs and FSIQ and 

Externalizing Problems at 8 years with multiple informant models (Horton et al., 1999; 

Litman et al., 2007), which are non-standard versions of generalized estimating equations 

that allow for repeated environmental chemical measurements (Sanchez et al., 2011). This 

method allows us to identify windows of susceptibility for PBDE neurotoxicity by including 

interaction terms between child age and PBDE concentrations. We estimated βs and 95% 

confidence intervals (CIs) for BDE-28, -47, -99, -100, -153, and ΣPBDEs with separate 

multiple informant models for each of the 100 imputed datasets. Final estimates for PBDEs 

were an average of the 100 results from imputed datasets (Beunckens et al., 2008; Shen and 

Chen, 2013) and are presented for ages 1, 2, 3, 5, and 8 years, because several interaction 

terms between PBDEs (continuous) and age (categorical) were statistically significant 

(p<0.10).

Covariates in the final models, selected based on their relationship with FSIQ or 

Externalizing Problems (p<0.10), included maternal age, race/ethnicity, household income, 

maternal serum cotinine at 16±3 weeks (ng/mL, continuous), marital status, maternal IQ 

(continuous, assessed by Wechsler Abbreviated Scale of Intelligence) (Wechsler, 1999), 

maternal depression (assessed by Beck Depression Inventory II at enrollment) (Beck et al., 

1996), HOME inventory score at the 1-year home visit (Caldwell and Bradley, 1984), and 
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child sex. Effect measure modification by child sex was examined using interaction terms 

between PBDEs (continuous), child sex (categorical), and child age (categorical), as well as 

all 2-way interactions (p<0.10).

In a sensitivity analysis, we performed non-imputation-based modeling to determine 

whether results differ between imputation-based and non-imputation-based models. We ran 

multiple informant models, as described above, using the original, non-imputed data to 

examine associations between childhood PBDEs and FSIQ and externalizing behaviors in 

children at 8 years. We also wanted to determine whether overall conclusions would differ 

had we used a traditional modeling method rather than multiple informant models. Using the 

original, non-imputed data, we performed separate multiple linear regression models to 

estimate βs and 95% CIs for individual PBDE congeners and ΣPBDEs measured during 

childhood in relation to our outcomes at 8 years. In another sensitivity analysis, we added 

blood lead levels at 8 years as a covariate to determine whether results are similar after 

adjustment for this known neurotoxicant. While peak exposure levels for lead occur at 18–30 

months in the US, studies have reported that concurrent blood lead levels are associated with 

decreased IQ points (Chen et al., 2005; Lanphear et al., 2005). We also performed an 

adjustment for prenatal PBDEs, which have been found to neurotoxic in previous 

epidemiologic studies, and breastfeeding duration (months).

3. Results

3.1 PBDE concentrations

The geometric mean (GM) of PBDEs at 2 and 3 years in the imputed datasets were slightly 

higher than the original dataset, while concentrations at 1, 5, and 8 years were more 

comparable to the original dataset (see Table S1). Imputed ΣPBDE concentrations in the 

datasets peaked at 2 years (127.7±2.5 ng/g lipid) and gradually decreased as children aged 

(Table 1). The most abundant congener was BDE-47, with GMs of 58.5±2.6, 66.2±2.9, 

47.3±2.8, 30.8±2.6, and 20.3±2.5 ng/g lipid at 1, 2, 3, 5, and 8 years, respectively (see Table 

S1). PBDE congeners were positively correlated with each other during childhood, with high 

correlation coefficients at 1 year (rp=0.64–0.95, p<0.0001), 2 years (rp=0.60–0.95, 

p<0.0001), 3 years (rp=0.48–0.97, p<0.001), 5 years (rp=0.49–0.95, p<0.0001), and 8 years 

(rp=0.43–0.94, p<0.0001) (see Table S2).

3.2 Participant characteristics

Overall, childhood ΣPBDEs were significantly higher among children whose mothers 

identified as non-Hispanic black or other race/ethnicities, were younger, were experiencing 

moderate to severe depression, and were single or living alone. Children from homes with a 

household income <$40,000 and who had lower HOME scores were more likely to have 

higher ΣPBDE concentrations. Child FSIQ at age 8 years was higher among those with 

mothers who were older, non-Hispanic white, of higher income, married/living with a 

partner, minimally/mildly depressed, and who had a higher HOME score. Scores for 

Externalizing Problems were significantly higher in males and children of mothers 

experiencing moderate to severe depression. Children included in our study (n=208) were 

more likely to have mothers who were not married or living alone than those excluded due to 
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loss of follow-up, inability to complete a blood draw, or missing neurobehavioral 

assessments at age 8 years (n=182) (see Table S3). However, children excluded from the 

present study due to missing information were comparable on all other sociodemographic 

characteristics, maternal characteristics (e.g., depression, IQ), home environment, and child 

sex. Maternal IQ was inversely correlated with ΣPBDEs at 2 and 3 years and positively 

correlated with child FSIQ (Table 2). Maternal serum cotinine was positively correlated with 

ΣPBDEs at 2 and 3 years and inversely correlated with child FSIQ.

3.3 Postnatal PBDEs and FSIQ

We observed an overall pattern of an inverse association between log10-transformed 

childhood PBDEs and FSIQ at age 8 years (Figure 1). A 10-fold increase in BDE-28 at 3 

years was associated with a 7.9-point decrease (95% CI: −13.6, −2.3) in FSIQ. Ten-fold 

higher BDE-153 at ages 2, 3, 5, and 8 years were significantly associated with FSIQ 

decrements of 5.4-points (95% CI: −10.8, −0.1), 7.7-points (95% CI: −12.5, −2.9), 8.2-

points (95% CI: −13.4, −3.0), and 5.6-points (95% CI: −10.8, −0.4), respectively. Ten-fold 

ΣPBDE increases at ages 3 and 5 years were associated with lower FSIQ at 8 years (β=−4.8, 

95% CI: −10.2, 0.5 and β=−4.5, 95% CI: −9.6, 0.6, respectively), with borderline 

significance (p<0.10).

3.4 Postnatal PBDEs and externalizing behaviors

Several PBDE congeners at 8 years were associated with higher concurrent Externalizing 

Problems scores, including BDE-28 (β=4.7, 95% CI: 0.8, 8.6), BDE-47 (β=3.4, 95% CI: 

0.004, 6.8), BDE-153 (β=4.2, 95% CI: 0.4, 8.0), and ΣPBDEs (β=4.3, 95% CI: 0.4, 8.2); 

estimates were all for a 10-fold concentration increase (Figure 2). Hyperactivity and 

Aggression scores were higher among children with increased PBDE concentrations at age 8 

years, with statistical significance for BDE-28 and -153 in relation to Hyperactivity and 

BDE-28, -47, -99, and ΣPBDEs in relation to Aggression. For earlier ages of PBDE 

exposures, only BDE-153 at 1 year was associated with Externalizing Problems (β=3.7, 95% 

CI: 0.1, 7.2) and Aggression (β=3.4, 95% CI: 0.1, 6.8). We did not observe any association 

between childhood PBDEs and Conduct Disorder scores (results not shown).

3.5 Child sex differences

We observed effect modification by child sex between several PBDE congeners at 8 years 

and FSIQ (see Table S4). Concurrent BDE-47 and ΣPBDEs were associated with lower 

FSIQ scores in males (β=−5.6, 95% CI: −11.0, −0.2 and β=−7.4, 95% CI: −13.2, −1.6), but 

no associations in females. This pattern was also noted with BDE-99 and -100 at 8 years. 

For Externalizing Problems, a 10-fold increase in BDE-153 at 8 years was associated with a 

7.2-point increase (95% CI: 2.9, 11.5) in males, but no associations in females.

3.6 Sensitivity analyses

Results from our non-imputation-based multiple informant models were similar to findings 

from imputation-based analyses despite a smaller sample size. Significant decreases in FSIQ 

were observed with 10-fold increases in BDE-28 at 3 years (β=−12.3, 95% CI: −23.6, −1.1) 

and BDE-153 at 5 years (β=−8.1, 95% CI: −14.0, −2.2) in our non-imputation-based 
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modeling (Table 3). Several PBDEs at 8 years remained positively associated with 

externalizing behaviors, hyperactivity, and aggression. In addition, linear regression models 

using the original, non-imputed data yielded similar results, with statistically significant 

positive associations noted between concurrent PBDEs and externalizing behaviors, 

hyperactivity, and aggression (see Table S5). Decrements in FSIQ were again observed with 

increased BDE-153 concentrations at 5 years. However, previous inverse associations 

between BDE-153 at other years during childhood as well as BDE-28 at 3 years failed to 

reach statistical significance. Lastly, adjusting for blood lead at age 8 years, prenatal PBDEs, 

and breastfeeding duration did not appreciably change our results (results not shown).

4. Discussion

Our findings suggest that childhood PBDEs are associated with lower FSIQ in children. 

Specifically, each 10-fold increase in BDE-28 at 3 years and BDE-153 at 2–8 years were 

significantly associated with >5-point decrements in FSIQ at 8 years. Our results align with 

findings from the U.S. CHAMACOS (Center for the Health Assessment of Mothers and 

Children of Salinas) Study that examined PBDEs and FSIQ, both assessed at 7 years of age 

(−5.6-point decrease [95% CI: −10.8, −0.3] with a 10-fold increase in Σ4PBDEs [BDEs 47, 

99, 100, and 153]) (Eskenazi et al., 2013). However, null associations were reported between 

4-year BDE-47 and cognition scores in a cohort in Menorca, Spain (Gascon et al., 2011). No 

other study outside of these has examined child serum PBDEs and FSIQ. Studies examining 

PBDEs in breastmilk and cognition have yielded conflicting results. In a Taiwanese study, 

Σ14PBDEs in breastmilk was not correlated with scores on cognition or language at 8–12 

months (Chao et al., 2011). In contrast, improvements in cognition were reported in children 

at 36 months with higher breastmilk BDE-153 in the North Carolina PIN (Pregnancy, 

Infection, and Nutrition) Babies Study (Adgent et al., 2014).

We found consistent evidence suggesting PBDE concentrations at age 8 years were 

associated with externalizing behaviors measured concurrently, including hyperactivity and 

aggression. Further, increased risk of having a score ≥60 in Hyperactivity or Aggression was 

also observed with higher BDE-28, -47, -153, and ΣPBDEs. Previously, BDE-47, -99, and 

-100 concentrations in breastmilk were associated with increased externalizing behaviors at 

30 months of age (Hoffman et al., 2012). Findings from our study also corroborate those of 

the CHAMACOS Study, which reported increased attention and hyperactivity problems in 

children with higher Σ4PBDEs concentrations at 7 years (Eskenazi et al., 2013). However, 

null associations were reported within the same cohort between Σ4PBDEs at 9 years and 

hyperactivity and attention problems at 9–12 years, though sex-specific impairments in 

executive function were observed among females (Sagiv et al., 2015). Gascon et al. (2011) 

reported increased risk of attention deficit symptoms at 4 years with higher concurrent 

BDE-47, though no association was observed with hyperactivity. Additionally, no 

association was reported between PBDEs in children 12–15 years and self-reported ADHD 

in the U.S. National Health and Nutrition Examination Survey (NHANES) (Przybyla et al., 

2016).

Epidemiologic studies examining postnatal PBDEs and neurobehavior are limited and 

inconsistent. Contradictory conclusions may be due to the timing and matrices in which 
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PBDEs were quantified. Only three studies measured PBDEs in child serum: CHAMACOS, 

Spain, and the NHANES (Eskenazi et al., 2013; Gascon et al., 2011; Przybyla et al., 2016; 

Sagiv et al., 2015), as we did; while others assessed concentrations in breastmilk, which only 

partially indicate first year exposure levels for breastfed infants without incorporating 

placenta transfer or postnatal dust ingestion (Adgent et al., 2014; Chao et al., 2011; Hoffman 

et al., 2012). Secondly, our study is a prospective birth cohort with multiple prospective 

PBDE measurements, while Gascon et al. (2011) and Przybyla et al.’s (2016) were cross-

sectional. Third, contrasting neurobehavioral domains, neurodevelopmental batteries, and 

age at assessment may also contribute to discordant findings. Only two studies (PIN and 

CHAMACOS) utilized the same assessments we used (WISC-IV, BASC-2) (Adgent et al., 

2014; Eskenazi et al., 2013; Sagiv et al., 2015), and the CHAMACOS Study assessed 

neurobehavior at 7–12 years, whereas Adgent et al. (2014) examined children at 36 months. 

Fourth, PBDE concentrations varied between cohorts. The GM of BDE-47 in HOME Study 

children at age 8 years was 20.3 ng/g lipid, while the CHAMACOS Study had lower 

concentrations at 7 years (15.8 ng/g lipid) and higher concentrations at 9 years (35.2 ng/g 

lipid) (Eskenazi et al., 2013; Sagiv et al., 2015). Further, median serum concentrations of 

BDE-47 at 4 years in the Menorca cohort were very low (0.12 ng/g lipid) (Gascon et al., 

2011).

We did not observe sexually dimorphic relationships for our main findings between PBDEs 

and FSIQ (BDE-28 at 3 years; BDE-153 at 2, 3, 5, and 8 years) and Externalizing Problems 

(BDE-28, -47, and ΣPBDEs at 8 years; BDE-153 at 1 year). Although, effect measure 

modification by child sex was found among associations that were not significant in our 

main analyses (FSIQ: BDE-47, -100, and ΣPBDEs at 8 years), with male-specific deficits in 

FSIQ. While it is unclear whether the associations between childhood PBDEs and FSIQ are 

modified by child sex, Leonetti et al (2016) have reported higher concentrations of PBDEs 

in the placentas of male infants than females. In addition, PBDEs were observed to alter 

thyroid hormone function in a sex-specific manner. However, the CHAMACOS Study 

reported no sex differences between Σ4PBDEs and FSIQ at 7 years (Eskenazi et al., 2013). 

In contrast, Sagiv et al. (2015) observed females in the same cohort were more sensitive to 

Σ4PBDEs at 9 years for attention and hyperactivity at 9–12 years of age. It is possible that 

sexually dimorphic relationships exist between PBDEs and neurobehavior at some 

combination of congeners and age points. However, the main findings from the HOME and 

CHAMACOS Studies suggest postnatal PBDEs are neurotoxic to both sexes.

Our findings provide evidence to support PBDEs’ neurotoxicity during childhood. Deficits 

in FSIQ at age 8 were observed across several PBDE congeners as well as the sum of the 

congeners. We observed statistically significant associations with BDE-153, which is more 

difficult to metabolize and excrete and has a higher fat deposition than other PBDE 

congeners (Staskal et al., 2006). We found that PBDEs at multiple time points during 

childhood were associated with FSIQ decrements at age 8, but most significant associations 

with externalizing behaviors were with concurrent PBDE concentrations at 8 years. It is 

possible that PBDEs are neurotoxic; however, windows of susceptibility may depend on the 

neurodevelopmental domain. Both the CHAMACOS and HOME Study report decrements in 

FSIQ and increased externalizing problems with increased prenatal PBDEs and postnatal 

PBDEs measured in children up to 8 years.
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This study has several methodological strengths, including its prospective study design and 

long follow-up period. We also had comprehensive measures of childhood serum PBDEs at 

multiple time points that allowed us to estimate associations for different exposure windows. 

By utilizing multiple informant models, we were able to conduct a comprehensive 

investigation of childhood PBDEs to identify windows of susceptibility to postnatal PBDE 

neurotoxicity, which has not been done in previous epidemiologic studies. Third, we 

estimated missing PBDEs using multiple imputation to minimize a loss in power. While 

imputing PBDE estimates are likely to result in some degree of random error, multiple 

imputation yielded GMs that were similar to the original, non-imputed PBDE 

measurements, with only slightly higher GMs for PBDEs at 2 and 3 years. In addition, study 

findings did not differ when we only examined non-imputed data, providing further 

assurance of the imputation-based modeling. Further, the main findings from our study were 

between PBDEs at 5 and 8 years and decrements in FSIQ and increased externalizing 

problems. PBDE concentrations were only imputed in 32% and 8% of HOME Study 

children at 5 and 8 years, respectively. Additional analyses examining this research question 

using the original, non-imputed data with a traditional modeling approach of multiple linear 

regression yielded similar conclusions. As such, concerns regarding the study’s findings 

based on imputed data are alleviated. Fourth, PBDE concentrations in the HOME Study are 

similar to levels in other U.S. cohorts (Eskenazi et al., 2013). Further, PBDE concentrations 

in HOME Study mothers (GM=21.7 ng/g lipid) are representative of pregnant women in US 

population (GM=23.9 ng/g lipid) (Woodruff et al., 2011). Lastly, we were able to adjust for 

an extensive array of confounders, including sociodemographics, the home environment, and 

maternal IQ and depressive symptoms.

Nevertheless, our findings are subject to some limitations, including selection bias. However, 

despite sample attrition, children included in the present study were similar to those 

excluded due to missing PBDEs and/or neurobehavior measures with regard to prenatal 

BDE-47 concentrations, sociodemographics, home environment, sex, and maternal 

characteristics (except marital status). Multiple comparisons is also a concern; however, we 

used multiple informant models to incorporate all PBDE measures in the same model, 

thereby reducing the total number of models. Of the 24 models in the present study, we 

would expect to see one statistically significant association based on chance alone. However, 

we observed 10 statistically significant findings. Further, our sensitivity analyses of the 24 

models resulted in 12 statistically significant associations. In addition, we acknowledge that 

separating congener-specific associations is difficult due to the high correlations between 

congeners. Residual confounding by socioeconomic status may also be a concern as effect 

estimates were greatly attenuated by the inclusion of household income. Finally, our study 

cannot address the discrepancies that were observed in the CHAMACOS Study with regard 

to postnatal PBDEs and externalizing behaviors. In that study, despite reporting increased 

hyperactivity problems in children at 7 years with increased concurrent PBDE 

concentrations, non-significant findings were observed between PBDE concentrations at 9 

years and hyperactivity at 9–12 years. These conflicting results may be due to the nonlinear 

continuity of externalizing problems, which decreases from early childhood to 

preadolescence and increases during adolescence before declining once more as adolescents 

reach adulthood (Petersen et al., 2015). Further, the cohort profile of the CHAMACOS 
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Study changed with the second child recruitment wave at age 9 years. The examination of 

childhood PBDEs and attention and executive function were limited to 9 year concentrations 

due to unmeasured PBDE estimates earlier in childhood in the newly enrolled children.

5. Conclusion

These findings suggest that PBDE exposure during childhood may be associated with 

decrements in child IQ and increases in externalizing behaviors. Given that the increases in 

PBDE concentrations after birth coincide with ongoing brain development, it is paramount 

that additional studies examine PBDEs’ potential neurotoxicity during childhood taking into 

account mixtures of multiple environmental pollutants and in adolescence when children are 

encountering academic challenges and new social patterns. Finally, this study highlights the 

need to further reduce exposures to PBDEs in childhood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Childhood PBDEs are associated with decrements in FSIQ at 8 years

• BDE-28 at 3 years and BDE-153 at 2–8 years significantly reduced FSIQ by 

>5 points.

• Several PBDEs at 8 years were positively associated with externalizing 

behaviors

• Concurrent PBDEs were associated with increased hyperactivity and 

aggression scores
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Figure 1. 
Estimated score differences and 95% CIs in WISC FSIQ at 8 years by a 10-fold increase in 

childhood PBDE concentrations in each exposure window, HOME Study. Adjusted by 

maternal age, race, marital status, maternal serum cotinine, maternal IQ, child sex, maternal 

depression, household income, and HOME Score.
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Figure 2. 
Estimated score differences and 95% CIs in BASC-2 Externalizing Problems and its 

subscales by a 10-fold increase in childhood PBDE concentrations, HOME Study. Adjusted 

by maternal age, race, marital status, maternal serum cotinine, maternal IQ, child sex, 

maternal depression, household income, and HOME score.
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Table 3

Estimated score differences and 95% CIs in WISC FSIQ and BASC-2 Externalizing Problems and its 

subscales at 8 years by a 10-fold increase in childhood polybrominated diphenyl ether concentrations in the 

non-imputation-based analysis, HOME Studya

PBDEs
FSIQ Externalizing

Problemsb
Hyperactivity Aggression

β (95% CI) β (95% CI) β (95% CI) β (95% CI)

BDE-28

  1 year 4.0 (−5.7, 13.8) 1.6 (−4.7, 8.0) −0.6 (−7.4, 6.2) 3.8 (−2.6, 10.1)

  2 years −4.2 (−17.8, 9.4) −3.4 (−10.8, 3.9) −6.6 (−13.9, 0.7) −0.6 (−8.8, 7.6)

  3 years −12.3 (−23.6, −1.1) −2.0 (−11.3, 7.2) −3.6 (−12.0, 4.8) −1.2 (−9.0, 6.6)

  5 years −2.4 (−9.5, 4.8) −3.6 (−7.8, 0.5) −4.3 (−9.7, 1.2) −0.9 (−4.5, 2.7)

  8 years −2.3 (−7.8, 3.3) 4.8 (1.6, 8.0) 5.0 (0.8, 9.2) 4.6 (1.4, 7.7)

BDE-47

  1 year −1.5 (−7.3, 4.2) −0.8 (−5.2, 3.6) −2.4 (−6.7, 1.8) 1.4 (−2.7, 5.6)

  2 years −3.9 (−11.7, 3.9) −2.3 (−8.2, 3.5) −3.5 (−9.3, 2.2) 0.2 (−5.8, 6.2)

  3 years −4.7 (−12.6, 3.2) −1.8 (−7.1, 3.5) −2.7 (−8.2, 2.7) 0.2 (−4.9, 5.2)

  5 years −1.6 (−7.4, 4.1) −0.8 (−3.8, 2.3) −1.0 (−4.7, 2.8) 1.4 (−1.6, 4.4)

  8 years −1.3 (−6.5, 3.9) 3.4 (0.2, 6.5) 2.0 (−1.9, 5.8) 4.7 (1.7, 7.7)

BDE-99

  1 year −2.8 (−7.9, 2.3) −0.3 (−4.3, 3.8) −1.3 (−5.1, 2.5) 1.2 (−2.6, 5.0)

  2 years −2.4 (−10.1, 5.2) −1.4 (−6.6, 3.8) −1.7 (−6.6, 3.2) −0.01 (−5.7, 5.7)

  3 years −3.5 (−10.7, 3.7) −1.2 (−5.9, 3.5) −1.4 (−6.2, 3.4) 0.1 (−4.5, 4.6)

  5 years −1.8 (−7.3, 3.7) −0.4 (−3.2, 2.5) −0.6 (−4.0, 2.8) 1.5 (−1.3, 4.3)

  8 years −1.1 (−6.1, 3.8) 2.1 (−1.2, 5.4) 1.0 (−3.0, 4.9) 3.6 (0.5, 6.7)

BDE-100

  1 year −3.0 (−8.9, 3.0) −1.6 (−6.0, 2.8) −2.8 (−7.0, 1.4) 0.3 (−3.7, 4.4)

  2 years −3.6 (−12.0, 4.8) −3.5 (−8.9, 2.0) −3.6 (−8.9, 1.7) −2.0 (−7.9, 4.0)

  3 years −6.3 (−14.7, 2.1) −3.0 (−8.3, 2.4) −3.4 (−8.8, 2.0) 1.4 (−6.6, 3.8)

  5 years −4.5 (−10.4, 1.3) −1.2 (−4.6, 2.1) −0.9 (−4.8, 3.0) 0.7 (−2.6, 4.0)

  8 years −0.8 (−6.5, 4.9) 2.2 (−1.2, 5.7) 1.8 (−2.3, 5.9) 3.2 (−0.2, 6.6)

BDE-153

  1 year −2.8 (−8.2, 2.6) 0.7 (−3.7, 5.1) 0.7 (−3.1, 4.6) 0.9 (−3.0, 4.8)

  2 years −4.1 (−11.5, 3.2) −1.1 (−5.8, 3.5) 0.4 (−3.8, 4.5) −2.1 (−6.9, 2.8)

  3 years −7.1 (−14.4, 0.2) −1.1 (−6.7, 4.6) 0.3 (−4.7, 5.3) −2.0 (−7.4, 3.4)

  5 years −8.1 (−14.0, −2.2) −1.4 (−6.5, 3.6) −0.4 (−5.5, 4.7) 0.1 (−4.8, 5.0)

  8 years −3.8 (−9.4, 1.8) 4.0 (0.2, 7.8) 4.7 (0.7, 8.6) 3.4 (−0.8, 7.6)

ΣPBDEs

  1 year −1.3 (−9.2, 6.6) 0.3 (−5.0, 5.6) −0.7 (−6.2, 4.9) 1.6 (−3.6, 6.8)

  2 years −6.2 (−19.7, 7.4) −3.0 (−8.8, 2.7) −5.0 (−11.0, 1.0) −1.2 (−8.3, 5.9)

  3 years −11.1 (−23.9, 1.6) −1.6 (−10.3, 7.2) −1.3 (−10.3, 7.7) −3.4 (−11.2, 4.3)

  5 years −2.7 (−10.0, 4.7) −1.7 (−5.6, 2.2) −1.7 (−6.7, 3.3) 0.5 (−3.1, 4.0)
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PBDEs
FSIQ Externalizing

Problemsb
Hyperactivity Aggression

β (95% CI) β (95% CI) β (95% CI) β (95% CI)

  8 years −2.5 (−8.7, 3.7) 3.9 (0.4, 7.5) 2.9 (−1.6, 7.4) 4.9 (1.4, 8.5)

a
Adjusted by maternal age, race/ethnicity, marital status, maternal serum cotinine, maternal IQ, child sex, maternal depression, household income, 

and HOME Score.

b
Externalizing Problems: Hyperactivity + Aggression + Conduct Disorder
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